

Phase 1 Discover

DAEN 460 Capstone Senior Design

Alexander Abuabara

Spring 2026

GENERATIONS

Alpha
(Born 2013-2025)

Gen Z
(Born 1997-2012)

Millennials (Gen Y)
(Born 1981-1996)

Gen X
(Born 1965-1980)

Boomers
(Born 1946-1964)

Silent
(Born 1928-1945)

Bosses are firing Gen Z grads just months after hiring them

- After two years of complaints, employers are now *acting*. Many are terminating Gen Z hires within months of onboarding.
- **Top concern?**

Bosses are firing Gen Z grads just months after hiring them

- After two years of complaints, employers are now *acting*. Many are terminating Gen Z hires within months of onboarding.
- **Top concern?**
 - Lack of motivation and initiative**
(50% of managers cite as the primary reason for termination)
- Other major issues reported:
 - Unprofessional behavior,
 - Poor organization,
 - Weak communication skills.
- Practical workplace challenges include:
 - Frequent lateness to work and meetings,
 - Inappropriate office attire,
 - Use of unsuitable language in professional settings.

Ref.:

<https://fortune.com/article/why-are-companies-firing-gen-z-employees-workplace-bosses-workers-jobs/>

<https://www.cnbc.com/2025/12/08/how-recent-grads-are-dealing-with-the-shrinking-pool-of-entry-level-jobs.html>

- Critique your own project against **learning goals** rather than technical checklists only!
- You are not being graded on reproducing a solution but on the **quality of your thinking and decisions!**
- Peers are not parallel workers, but as part of a **shared system**. Shift the culture from individual performance to collective responsibility and make **collaboration** (not cooperation only)!
- **Metacognition** ...
why I'm thinking what I'm thinking → make the invisible visible!

Today's Agenda

- Sponsor Meetings and Project Advice
- Communication Team
- Phase 1 Discover & Presentation Guidelines
- Mini Project Management Packet
- Gantt Chart

Sponsor Meeting

How about **feedback** from last semester?

- *What went well?*
- *What do you wish you'd done prior to the meeting that you did not?*
- *Did all the team get to introduce themselves?*
- *Were your expectations met for the next meeting?*
- *Did you identify some needed information and establish a target date?*
- *Did you set a follow-up meeting or recurring meeting?*
- *What can be improved?*

Sponsor Meeting Tips

Be prepared

- Agenda prepared and sent ahead of time
- Team knows who will speak and on what topic
- Questions prepared
- Team member(s) assigned to take notes
(record audio/video only if sponsor agrees)

Listen more than you speak

- Wait for sponsor to answer questions,
don't interrupt with additional questions
- Don't try to provide immediate solutions,
this is still a semester long project

Sponsor Meeting Tips

Ask for clarification on anything you don't understand

- Ask for meaning of any terms or acronyms the sponsor uses! Don't assume your teammates will know!
- Don't pretend to understand something you don't.

End the meeting with plans



- Action items for team or sponsor with target dates.
- Next meeting date set or proposed.

Sponsor Meeting Tips

Remain positive and upbeat throughout the project

- Not everything will go perfectly, don't expect it to and don't get down when it doesn't.
- Never talk bad about anyone; sponsor, team member, instructors (especially).

If someone needs to miss a meeting

- Make sure the sponsor knows why, explain at the start of the meeting that ... can't make it because
- Make sure to follow up with person that missed to distribute information or action items!

Sponsor Meeting Tips

Ensure meetings don't go longer than allotted

- Listen for clues sponsor needs to go (“well, that about wraps it up...”, “OK, if there isn't anything else...”, etc.)
- and, not meeting related *but*:

Don't be afraid to call the sponsor if emails are not answered and you need answers

- Set target dates for required information and follow up,
- If you call and they don't answer, leave a voicemail.

Sponsor Meeting Tips

You'll be surprised
by the doors this
can open...

!

- Dress **appropriately** (*ask if in doubt*) <https://careercloset.tamu.edu/>
- Phone on **silent mode** and **don't use it**,
- Follow all **safety rules** (and instructions),
- **Ask** before taking photos or videos,
- **Document** who you meet with,
- You are representing **Texas A&M**, be a good example!

Team Dynamics

1. You are called a team for a reason

- You have the same goals
- You each have skills and abilities

2. Share the load

- No one gets a free pass
- Work independently but together

Team Dynamics

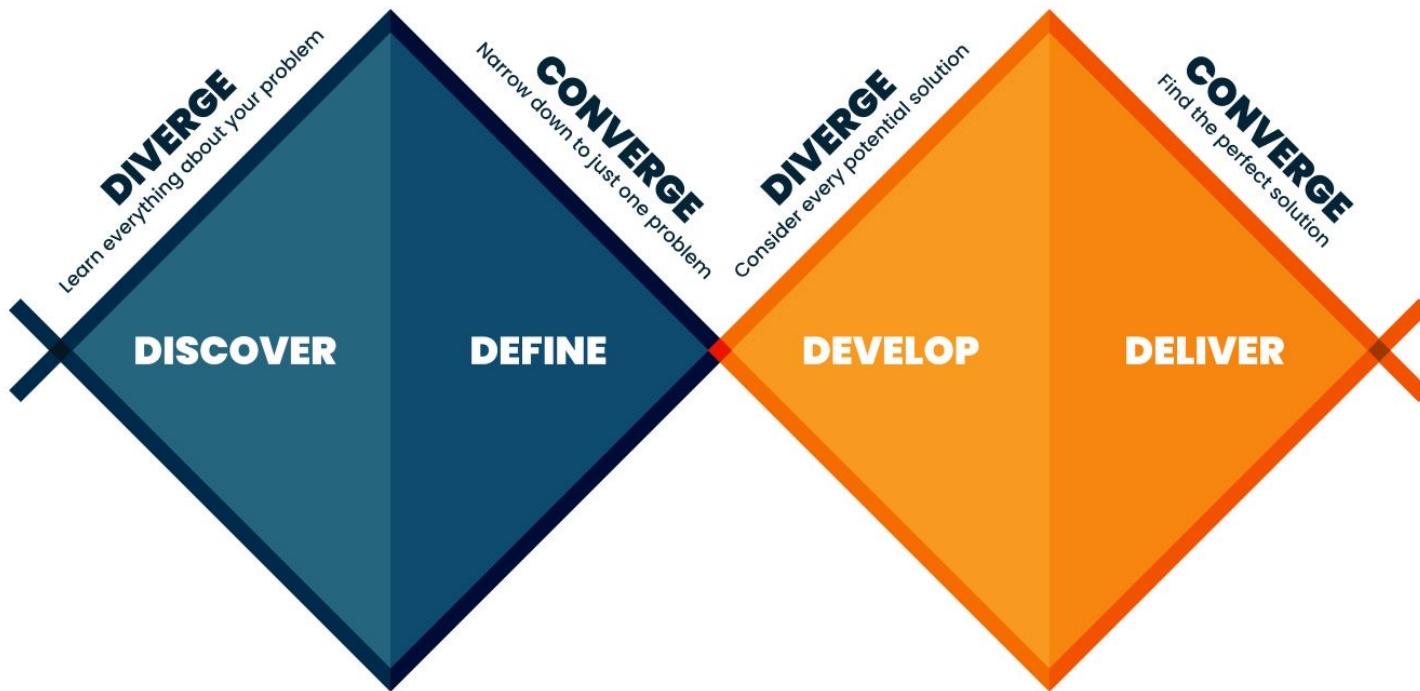
3. Recognize and acknowledge differences

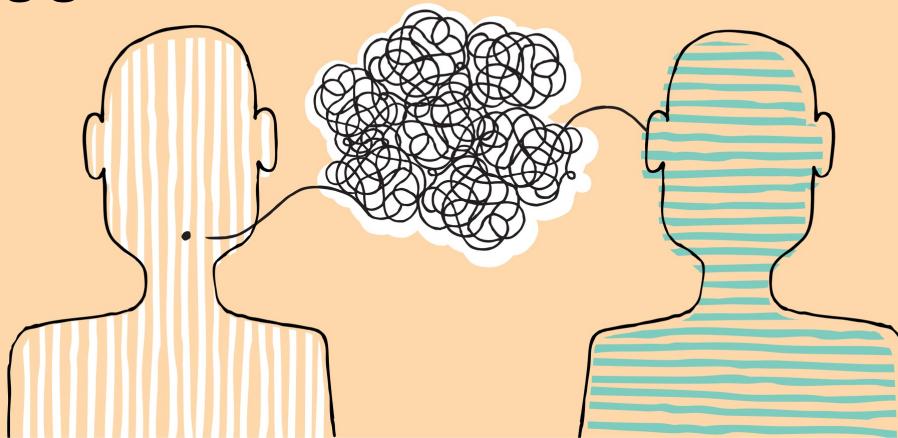
- Compromise
- Use individual strengths to make the team better

4. If you have difficulty

- Try to work things out together (don't talk bad about anyone!)
- Contact instructor team for assistance only if you can't work it out

Faculty Advisor


- If you have not identified yet a potential faculty advisor, do it ASAP!
- For areas of research interest/expertise, consult the ISEN website, follow research tab to Research Fields.
- Your project does not need to perfectly align with a professor's research field, but they are more likely to accept if it is something that interests them.


Phase 1 Discover

- Phase 1 will **set the direction** for your project.
- Phase 1 is **not about solutions**;
it is about the problem/opportunity.

Phase 1 Discover

- Phase 1 will **set the direction** for your project.
- Phase 1 is **not about solutions**;
it is about the problem/opportunity.
- Some **primary goals** for Phase 1 include
 - **Information gathering,**
 - **Problem definition,**
 - **Client needs identification,**
 - **Technical objectives development.**
- Establishing good/effective communication is also a goal!

Information Gathering

- Will occur continuously throughout the project, but critical at beginning.
- Necessary for defining parameters and scope of project.
- Information can include (but not limited to)
 - Sponsor company,
 - Industry/market,
 - Competitors,
 - **Standards/Constraints** that guide or limit the solution (ABET).
- Sources can include
 - Sponsor, trade publications or other public published material, internet.
- **The goal of Phase 1 is to gather as much information as possible, even if you're not sure it's relevant.**

Problem Definition

- Should be a **concise statement** of the problem facing your sponsor
 - Focus on the source of the problem, not the symptoms or solution,
 - Keep the language simple, avoid technical jargon,
 - Avoid detail, that will be fleshed out with customer needs.
- Done **in conjunction** with *Information Gathering*.

Problem Definition (Example)

- Should be a **concise statement** of the problem facing your sponsor
 - Focus on the source of the problem, not the symptoms or solution,
 - Keep the language simple, avoid technical jargon,
 - Avoid detail, that will be fleshed out with customer needs.
- Done in **conjunction** with Information Gathering.

Good:

The Radiology Department at Texas A&M Hospital experiences prolonged imaging turnaround times due to inefficiencies in the order processing workflow, resulting in delayed clinical decision-making.

Not so good:

The Radiology Department at Texas A&M Hospital has many problems with imaging, staff availability, communication between departments, patient flow, and rising costs, which together negatively impact hospital efficiency and patient satisfaction.

Why this is stronger?

Good:

The Radiology Department at Texas A&M Hospital experiences prolonged imaging turnaround times due to inefficiencies in the order processing workflow, resulting in delayed clinical decision-making.

Why this is stronger?

Good:

The Radiology Department at Texas A&M Hospital experiences prolonged imaging turnaround times due to inefficiencies in the order processing workflow, resulting in delayed clinical decision-making.

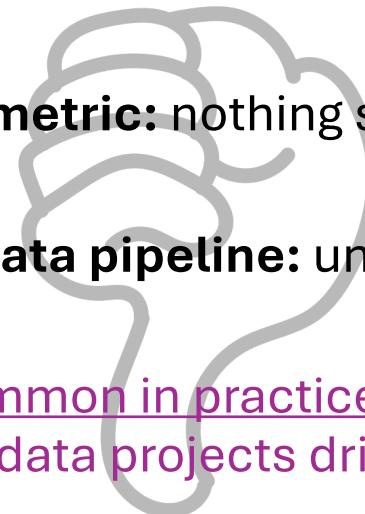
- **Focuses** on a single, primary process (order processing workflow)
- Names one **measurable** outcome (imaging turnaround time)
- **Avoids mixing** staffing, length of stay, and cost into the core problem
- Creates a **clear target** for data collection and pipeline design

Why this is “not so good”?

Not so good:

The Radiology Department at Texas A&M Hospital has many problems with imaging, staff availability, communication between departments, patient flow, and rising costs, which together negatively impact hospital efficiency and patient satisfaction.

Why this is “not so good”?


Not so good:

The Radiology Department at Texas A&M Hospital has many problems with imaging, staff availability, communication between departments, patient flow, and rising costs, which together negatively impact hospital efficiency and patient satisfaction.

- **Too broad:** bundles multiple domains (staffing, communication, flow, cost, satisfaction)
- **No clear process focus:** unclear what system or workflow should be instrumented
- **No measurable primary metric:** nothing specific to optimize or monitor
- **Hard to translate into a data pipeline:** unclear what data to collect, where, or why

This kind of statement is common in practice.

And it's exactly what makes data projects drift or fail.

Client Needs

- Likely discovered as part of problem definition development, but this allows you to expand on the problem definition with **statements of specific needs**
- Should be a **list of things** in clear, unambiguous, non-technical terms
- May be **provided directly by the sponsor** or you may need to solicit and/or **interpret them from conversations** and other research
- Number client needs for identification in **traceability** matrix
- The client needs...
 - **N1:** Awareness of data quality, security, and compliance risks
 - **N2:** Limited exposure to corrupted, incomplete, or inconsistent data in production systems
 - **N3:** A standardized process to increase adoption and correct usage of data pipelines and tools
 - **N4:** Fewer system and pipeline failures, reducing operational downtime

Technical Objectives

- Technical objectives should translate the customer needs and problem definition into actionable, measurable goals.
- Each objective should be **Specific, Measurable, Achievable, Relevant, and Time-bound** (SMART).

Technical Objectives

- Technical objectives should translate the customer needs and problem definition into actionable, measurable goals.
- Each objective should be **Specific, Measurable, Achievable, Relevant, and Time-bound (SMART)**.
- Number TO's for **traceability** purposes.
- Technical objectives **should address** how the project will solve the defined problem and satisfy the customer needs.
 - **TO1:** Reduce data pipeline failure rates (by xx%)
 - **TO2:** Increase engineer awareness of data quality and reliability risks
 - **TO3:** Improve automated workflow orchestration activation
 - **TO4:** Decrease system downtime (to less than xx)
 - **TO5:** Eliminate identified data leakage and schema integrity issues
- At this point your TO's may not have defined performance indicators, but **they will evolve as the project moves forward**.

A WORKPLAN WITH 20 SMART GOALS?

IT'S REA

Technical Objectives for Open-ended Research Projects

Your goals should center around developing **knowledge, frameworks, and methodologies** that help answer key questions or inform decision-making.

- If your project is more research-focused, your objectives **may not have** quantifiable performance improvement criteria.
- For research-driven projects, technical objectives should:
 - **Define Key Questions**
What are you trying to **discover, validate, or understand**?
 - **Establish Analytical Frameworks**
What **methods, models, or simulations** will you develop?
 - **Characterize System Relationships**
How do the **key factors** of your problem/system interact?
 - **Develop Conceptual or Qualitative Deliverables**
What **frameworks, decision-support tools, methodologies, or documentation** will your team generate?

See the document posted on Canvas for examples.

Example

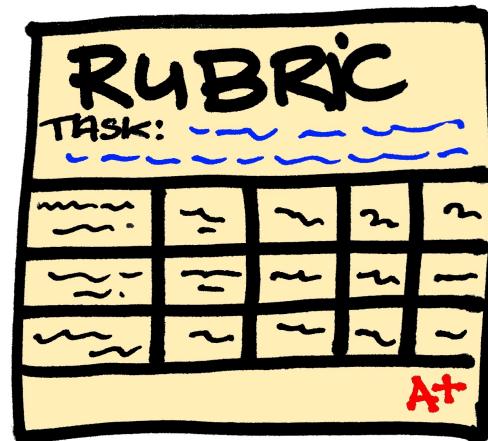
Research-Oriented Data Engineering Project Objectives

Suppose your team is studying data pipeline reliability in large-scale streaming systems. Your technical objectives might be:

- **Key Questions**
 - **What factors** most strongly influence end-to-end latency and data loss in a real-time streaming pipeline?
 - **How do different** buffering strategies affect system stability under peak load?
- **Analytical Frameworks**
 - **Develop a benchmarking framework** to simulate varying data arrival rates and system loads.
 - **Design experiments** using controlled workloads to compare multiple pipeline architectures.
- **System Relationships**
 - **Analyze how** ingestion rate, buffer size, and processing throughput interact to produce bottlenecks.
 - **Model the relationship between** fault frequency and recovery time.
- **Conceptual or Qualitative Deliverables**
 - **Produce a decision framework that guides engineers** in selecting buffering and checkpointing strategies.
 - **Create documentation that outlines best practices** for designing resilient streaming pipelines.

Traceability

- Traceability will ensure that your project is **on track** to meet your technical objectives.
- At this point you should connect defined client needs to technical objectives in a **traceability matrix**.
- Client needs will likely not map one-to-one to technical objectives, but **all client needs should map to at least one technical objective**.

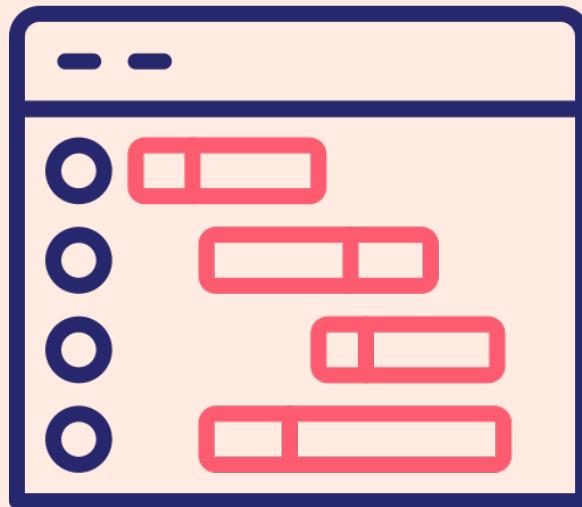

Client Needs (N)	Technical Objectives (TO)
N1	TO1, TO3, TO6
N2	TO2, TO4
...	...

Phase 1 Presentation Guidelines

- Presentation guidelines document is posted on Canvas.
- Provides **general guidelines** on how and what to present, but your project should guide the content.
- Do not try to present everything you've learned so far (**time is limited**).
- Appendix is for information you've gathered that might be relevant:
 - Reference information as necessary in presentation,
 - Don't present appendix slides,
 - Technical grade for Information Gathering **will be** partially based on appendix content.
- **Practice** your presentation, both individual parts and as a team!

Phase 1 Presentation Rubric

- Built into Canvas assignment,
- Primary instructor will provide input/feedback,
- Half of the missed points can be recovered by resubmitting the content.


Mini Project Management Packet

- It demonstrates how the project will be **planned, governed, executed, monitored, and communicated** in a professional data engineering environment.
- It extends your Fall semester project charter and confirms your team's ability to manage **scope, risk, quality, and delivery** in addition to building the pipeline.
- It defines what will be done as technical objectives.
- Due date is prior to Phase 2 kickoff.

Gantt Chart

- See documents posted on Canvas.
- Make the chart useful for your project,
don't just do it to check a box!

