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Plan for Today
1. Previously
2. Attribute Data in Spatial ETL

• Intro to Thematic Maps

3. Vector Attribute Operations
4. Raster Attribute Operations
5. Pre-Processing Workflows in Spatial ETL
6. Questions to Practice
7. Assignment #2
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Previously
Spatial Data Models
• Vector vs Raster
• Coordinate reference systems (CRS)

Spatial Objects
• sf	objects: geometry + attributes
• terra	rasters: value grids with implicit spatial metadata
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Spatial Data Models
Vector
• Points, Lines, Polygons
• Discrete features with 

attributes
• sf package

Raster
• Grid cells with values
• Continuous surfaces
• terra package
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Coordinate Reference Systems (CRS)
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Geocentric and local geodetic datums shown on top of a geoid (in false color and the vertical 
exaggeration by 10,000 scale factor). Image of the geoid is adapted from the work of Ince et al. (2019).



CRS Example
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Examples of geographic (WGS 84; left) and projected (NAD83 / UTM zone 12N; right) coordinate 
systems for a vector data type.



Some Essential R Packages
dplyr

• Pipe operators (%>%)

• filter(), select(), mutate()

• group_by(), summarize()

• Works with sf objects

sf

• Vector data handling

• Integrates with tidyverse

• Sticky geometry column

• Fast spatial operations

spData

• Datasets for Spatial Analysis

units

• sf objects have native support for units

terra

• Raster data handling

• Fast computation

• Multi-layer support

• Memory efficient

7



Features and Attribute Data
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• Features are real world things such 
as roads, property boundaries, sites 
and so on
• A feature has a:
• Geometry

(which determines if it is a point, 
polyline or polygon)
• Attributes

(which describe the feature)

Feature

Geometry Attributes

Point Polyline Polygon



Attribute Data
What are attributes?
• Non-spatial data combined with spatial features

(Examples: bus stop name, population count, elevation value, land use category)

Difference between geometry and attribute data
• Geometry data defines the spatial location and shape of 

features using coordinates, answering “where” an object is
• Attribute data describes the non-spatial, qualitative, or 

quantitative characteristics of those features, such as 
names, types, or values, answering “what” the object is
• They are linked by unique identifiers in GIS
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Attribute Table
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Attribute

Record



Attribute Data; Extract, Transform, Load
Why attribute operations are central to ETL
• Essential for filtering, merging, aggregating,

and reshaping datasets
• Direct impact on analytics outcomes
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Attribute Data Workflow
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Statistical Maps & Thematic Mapping
• A thematic map is used to show spatial patterns
• Data is aggregated by predefined spatial units

(e.g., countries, states, districts)
• Thematic maps include types such as choropleth, dot 

density, proportional symbol, and isopleth maps
• They display the spatial distribution of one or more data 

themes across selected geographic areas
• Data can be:

• Quantitative (e.g., population change, income levels)
• Qualitative  (e.g., soil types, land use)

• To create a vector thematic map, select the attribute field 
in the map layer that represents the data to be mapped

13



Distribution Maps

• Example of a continuous color scheme applied to a choropleth map
• Such a map(continuous) may not be as informative as one would like it to be
• In statistics, we seek to reduce large sets of continuous values to 

discrete entities to help us better “handle” the data
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Equal Interval

• An equal interval choropleth map using 10 bins
• In the field of statistics, discretization of values can take on the form of 

a histogram where values are assigned to one of several equal width 
bins

• A choropleth map classification equivalent is the equal interval 
classification scheme
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Quantile Map

• While an equal interval map benefits from its intuitiveness, it may not 
be well suited for data that are not uniformly distributed across their 
range 

• Quantiles define ranges of values that have equal number of 
observations

• Six quantiles with each quantile representing the same number of 
observations
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Boxplot Map

• The discretization of continuous values can also include measures of 
centrality (e.g., the mean and the median) and measures of spread 
(e.g., standard deviation units) with the goal of understanding the 
nature of the distribution such as its shape (e.g., symmetrical, skewed, 
normal) and range
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IQR Map

• The IQR map is a reduction of the boxplot map whereby we reduce the 
classes to just three: the interquartile range (IQR) and the upper and 
lower extremes
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Standard Deviation Map

• Note from the figure that the income data do not follow a normal 
distribution exactly; they have a slight skew toward higher values

• This results in more polygons being assigned higher class breaks than 
lower ones
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Color Ramps
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COLORBREWER - color advice for cartography at https://colorbrewer2.org/

https://colorbrewer2.org/


Color Ramps Best Practices
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Categorical palettes
• Consist of easily distinguishable colors and are most appropriate for categorical data without any 

particular order such as state names or land cover classes.

• Colors should be intuitive: rivers should be blue, for example, and pastures green.

• Avoid too many categories: maps with large legends and many colors can be uninterpretable.

Sequential palettes
• Follow a gradient, for example from light to dark colors (light colors often tend to represent lower 

values), and are appropriate for continuous (numeric) variables.

• Sequential palettes can be single (greens goes from light to dark green, for example) or multi-
color/hue.

Diverging palettes
• Typically range between three distinct colors (purple-white-green) and are usually created by joining 

two single-color sequential palettes with the darker colors at each end.

• Their main purpose is to visualize the difference from an important reference point, e.g., a certain 
temperature, the median household income or the mean probability for a drought event.



Color Ramp Example
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Vector Attribute Operations 1
Subsetting
• Row filtering with filter()
• Column selection with select()
• Base R vs tidyverse approaches
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Base R Approach

#	Select	columns
select(world,	name,	pop)
	
#	Filter	rows
filter(world,
		area_km2	<	10000)

#	Subset	rows	&	columns
world[1:5,	]
	
#	Logical	subsetting
small	=	world[
		world$area	<	10000,	]

tidyverse Approach

Using [	] operator: Using dplyr verbs:

Key Functions
select() choose columns
filter() subset rows by condition
slice() select rows by position
pull() extract single column as vector

Subsetting
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The pipe operator enables expressive, readable code

result	=	world	|>
		filter(
				continent	==	'Asia')	|>
		select(name,	continent)	|>
		slice(1:5)

result	=	slice(
		select(
				filter(world,
						continent=='Asia'),
				name,	continent),
		1:5)

Without Pipes (Nested) With Pipes (|> or %>%)

Benefits of Piping
• No intermediate variable names needed
• Easy to add/remove steps
• Works with RStudio keyboard shortcuts

• Ctl	+	Shift	+	M	on Windows or Linux
• Cmd	+	Shift	+	M	on MacOS

Chaining Operations with Pipes (Ref.)

❌ Hard to read ✓ Clear & readable
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Vector Attribute Operations 2
Aggregation techniques
• Summarizing data by groups (e.g., all or categories)
• Use of aggregate(), group_by(), summarise()
• Handling spatial attributes in aggregation
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Summarize data with grouping variables

world_agg	=	world	|>
		group_by(continent)	|>
		summarize(
				Pop	=	sum(pop),
				Area	=	sum(area_km2),
				N	=	n()
		)	|>
		mutate(
				Density	=	Pop	/	Area
		)

Example: Population by Continent

Aggregation

Key Concepts
group_by() Define grouping variable
summarize() Aggregate with functions
mutate() Create new columns
n() Count observations

Result: New sf object with one row per 
group + unified geometry
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Vector Attribute Operations 3
Attribute joins
• Joining non-spatial tables to spatial data via keys
• Differences between relational joins and spatial joins

(spatial joins covered later in spatial operations)
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Combine tables based on shared key variable

left_join()

Keep all rows from first table, add matching data from second
world_coffee	=	left_join(world,	coffee_data)

Attribute Joins

inner_join()

Keep only rows with matches in both tables
world_coffee	=	inner_join(world,	coffee_data)

full_join()

Keep all rows from both tables, fill NA where no match
world_coffee	=	full_join(world,	coffee_data)
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Vector Attribute Operations 4
Creating / transforming attributes
• Generating new metrics (e.g., density, ratios)
• Use of mutate(), transmute()
• Renaming attributes with rename(), setNames()
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Vector Attribute Operations 4
Geometry retention and removal
• How operations preserve or drop geometry
• When to use st_drop_geometry()

Or st_set_geometry(NULL)
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Raster Attribute Operations
Raster attributes basics
• Grid values as attributes
• Spatial meaning of raster cell indices and resolution

Subsetting and extraction
• Extracting cell values from layers
• Working with continuous vs categorical rasters

Global raster operations
• Summary statistics across full raster extents
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#	Row-column	indexing
elev[1,	1]
	
#	Cell	ID
elev[1]
	
#	Extract	all	values
values(elev)
	
#	Modify	values
elev[1,	1]	=	0

#	Numeric	raster
elev	=	rast(
		nrows	=	6,	ncols	=	6,
		xmin	=	-1.5,	xmax	=	1.5,
		ymin	=	-1.5,	ymax	=	1.5,
		vals	=	1:36
)
	
#	Categorical	raster
grain	=	rast(...,	
		vals	=	factor(grain_char))

Raster Data Operations Subsetting Methods

Summary Statistics
global() Calculate statistics
freq() Frequency table
summary() Quick overview
hist() Visualization

Raster Data Operations
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Map Algebra
(More Later in Raster Analysis)
• Cell-by-cell combination of raster data layers
• Each cell has a value
• Simple operations can be applied to values

• Unary operations apply to one layer
• Binary operations apply to two data layers
• More complex operations apply to many layers
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Pre-Processing Workflows
Establishing a reproducible workflow
• Scripted workflows vs ad-hoc steps
• Importance of documentation and version control

Typical pre-processing steps
• Data import and initial inspection
• Attribute cleaning (e.g., selecting relevant fields, renaming)
• Coordinate system standardization
• Handling missing or inconsistent values
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1. Extract
• Read spatial data (sf, terra)
• Import attributes (from CSV/DB)
• Web APIs & services

2. Transform
• Filter & subset
• Aggregate & summarize
• Join & merge
• Create new attributes

3. Load
• Write to file formats
• Export to database
• Publish to web services

Spatial ETL Workflow
Extract → Transform → Load pipeline for spatial data

Best Practices
• Use pipes for readable workflows   • Preserve geometries with sf operations
• Drop geometry when speed matters   • Document transformations
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#	1.	Load	data
library(sf)
library(dplyr)
library(spData)

#	2.	Join	spatial	+	attribute	data
world_coffee	=	left_join(world,	coffee_data,
																									by	=	'name_long')

#	3.	Filter	&	aggregate
top_producers	=	world_coffee	|>
		filter(!is.na(coffee_production_2017))	|>
		select(name_long,	coffee_production_2017)	|>
		arrange(desc(coffee_production_2017))	|>
		slice(1:10)

#	4.	Visualize
plot(world_coffee['coffee_production_2017'])

Practical Example: Coffee Production
Complete workflow from data join to visualization

Geometry column preserved throughout!
sf objects behave like data.frames
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Best Practices
Efficiency considerations
• When to drop geometry for speed
• tidyverse vs base R performance tradeoffs

Data integrity and accuracy
• Validate joins and aggregations
• Check spatial and attribute consistency

Reproducibility standards
• Use of R Markdown, notebooks, and code containers(Docker)
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Common Pitfalls
Losing geometry column 
Solution: Use dplyr verbs or st_drop_geometry() explicitly
Avoid: world$name	 Use: pull(world,	name)

Mismatched join keys 
Solution: Transform to same coordinate system before operations
left_join(world,	data,	by	=	join_by(name	==	country))

Mismatched join keys
Solution: Transform to same coordinate system before operations
left_join(world,	data,	by	=	join_by(name	==	country))

Mismatched join keys
Solution: Transform to same coordinate system before operations
st_transform(data,	crs	=	st_crs(world))
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Questions to Practice
1. Can you explain what attribute transformation is and 

give an example of when you would create a new feature 
from existing data?

2. How do you typically handle missing or inconsistent 
values during the data pre-processing stage?

3. Why is data normalization or standardization important, 
and in what situations would you apply it?

4. Can you describe a typical data analysis workflow, from 
receiving raw data to producing final insights?
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Assignment #2 – Objective
Workflow in R (or Python)

• Load spatial data (sf, terra)
• Subset and clean attributes
• Join external attribute table to spatial data
• Compute summary statistics
• Export results for visualization or modeling
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Assignment #2 – Background
• Land parcels are boundaries that have associated information such as property 

owner, land use, value, and location attributes

• Improvement value refers to the assessed monetary value attributed not to the 
land itself but to the physical improvements on the land (typically buildings and 
other structures). In the context of property assessment, this is often used as a 
proxy for the built environment's contribution to total property worth (e.g., 
houses, garages, renovations).
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Follows
1. Data Acquisition
2. Data Preparation
3. Aggregation and Analysis
4. Integrate Census Data
5. Visualizations
6. Documentation and Reporting



Assignment #2 – Part 1
1. Data Acquisition 
Parcel Data
• Visit the Texas Natural Resources Information System (TNRIS) portal 

https://tnris.org/stratmap/land-parcels.html
• Select parcel data for 5 neighboring counties of your choice
• Download the 2025 parcel datasets for each county and unzip in a 

folder (a local folder with raw parcel shapefiles files for the counties)
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Assignment #2 – Part 2
2. Data Preparation
Using R (with sf, dplyr, and tidyr)
a.Read the parcel files, standardize and inspect

• Combine all counties into a single sf object
• If needed, ensure projections(and fields) are consistent across counties
• Inspect STAT_LAND_ and IMP_VALUE

b.Filter for single-family houses
• Define single family residential by the parcel state code:
STAT_LAND_	==	"A"
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Assignment #2 – Hints 1
library(sf)
target_crs	<-	4326		#	WGS84,	change	as	needed/appropriated

parcels	<-	list.files(
		path	=	"/Users/abuabara/Downloads/DAEN489_data/parcels",
		pattern	=	"\\.shp$",
		full.names	=	TRUE,
		recursive	=	TRUE
)

parcels_all	<-	do.call(
		rbind,
		lapply(
				parcels,
				function(f)	{
						x	<-	st_read(f,	quiet	=	TRUE)
						
						if	(is.na(st_crs(x)))	{
								st_crs(x)	<-	target_crs
						}
						
						x	<-	st_transform(x,	target_crs)
						x$source_file	<-	basename(f)
						x
				}
		)
)

parcels_all$STAT_LAND_2	<-	substr(parcels_all$STAT_LAND_,	1,	1)
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Assignment #2 – Part 3
3. Aggregation and Analysis
a. Aggregate Improvement Value

• For each county, calculate:
– The total improvement value of single-family parcels
– Parcel count
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Assignment #2 – Hints 2
library(dplyr)

agg_parcels	<-	parcels_all	%>%	
		filter(STAT_LAND_	==	"A")	%>%
st_set_geometry(NULL)	%>%	

		group_by(COUNTY)	%>%	
		summarise(GEOID	=	unique(FIPS),
												total_imp_value	=	sum(IMP_VALUE,	na.rm	=	TRUE),
				 		parcel_count	=	n())

library(tidyr)

parcels_all	%>%	
		st_drop_geometry()	%>%	
		filter(!is.na(IMP_VALUE)	&	IMP_VALUE	>	0)	%>%
		group_by(COUNTY,	STAT_LAND_2)	%>%	
		summarise(n	=	n(),
												IMP_VALUE	=	sum(IMP_VALUE,	na.rm	=	TRUE),
												.groups	=	'drop')	%>%	
		arrange(desc(n))	%>%
		pivot_wider(names_from	=	STAT_LAND_2,	
														values_from	=	n,	
														values_fill	=	0)
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Assignment #2 – Part 4
4. Integrate Census Data
a. Acquire Census TIGER/Line Data

• Use the tidycensus packages to download:
• County boundaries
• Population estimates (e.g., ACS 5-year estimate for total population)

b. Merge with Parcel Aggregates
• Join population data by county GEOID or name

c. Compute Per Capita Metrics
• Average improvement value per capita
• Average population per single-family parcel
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Assignment #2 – Hints 3
library(tidycensus)

census_api_key("YOUR	API	GOES	HERE")

pop_data	<-	get_acs(geography	=	"county",
																						#	county	=	"Brazos",
																						county	=	unique(agg_parcels$COUNTY),
																						output	=	"wide",
																						geometry	=	FALSE,
																						variables	=	c(pop	=	"B01001_001"),
																						state	=	"TX",
																						year	=	2023)

agg_parcels	<-	agg_parcels	%>%
	 	 		left_join(pop_data,	by	=	"GEOID")	%>%
	 	 		mutate(
	 	 				imp_value_per_capita	=	total_imp_value	/	popE
		 	 		)
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Assignment #2 – Part 5
5. Visualization
a. Basic thematic maps

• Use tmap (or ggplot2) to produce:
– Basic choropleth map of total improvement value by county
– Basic choropleth map of average improvement value per inhabitant

b. You may also consider including supporting plots, such as:
• Bar charts or scatterplots showing:

– Population vs. improvement value
– Parcel count vs. per capita value

c. Interpretation
• Comment on spatial patterns

(e.g., regional real estate markets, population density relationships)

50



Assignment #2 – Hints 4
library(tmap)

tm_shape(parcels_all)	+
				tm_polygons(fill	=	"STAT_LAND_2",	lwd	=	0)
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Assignment #2 – Part 6
6. Documentation and Reporting
a. Reproducible script or Jupyter notebook

• Clean, commented (as possible)

• Reproducible from data download to map output
b. Include

• Data sources and preprocessing steps
• Results and interpretations
• Limitations and potential extensions (e.g., overlay zoning, flood risk)

c. Visuals
• Please include / submit maps and charts with captions
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Appendix
Geographic Data & Spatial ETL with Python
Attribute Operations 1

#	Libraries
import	numpy	as	np
import	pandas	as	pd
import	geopandas	as	gpd
import	rasterio
import	rasterio.plot
import	matplotlib.pyplot	as	plt

#	Data
world	=	gpd.read_file('/Users/abuabara/…/DAEN489/pydata/world.gpkg')
src_elev	=	rasterio.open('/Users/abuabara/…/DAEN489/pydata/elev.tif')
src_grain	=	rasterio.open('/Users/abuabara/…/DAEN489/pydata/grain.tif')
src_multi_rast	=	rasterio.open('/Users/abuabara/…/DAEN489/pydata/landsat.tif')

Libraries and Data
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Attribute Operations 2
Vector Attribute Subsetting
Subset Countries with Small Area
world.head()

idx_small	=	world['area_km2']	<	10000
small_countries	=	world[idx_small]
small_countries

Logic to Combine Conditions
asia_small	=	world[
				(world['continent']	==	'Asia')	&
				(world['area_km2']	<	10000)
]
asia_small[['name_long',	'continent',	'area_km2']]
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asia_subset	=	world[world['continent']	==	'Asia']	\
				.loc[:,	['name_long',	'continent']]	\
				.iloc[0:5,	:]
asia_subset

Select Specific Columns & Rows



Attribute Operations 3

world_pop	=	world.groupby('continent')[['pop']].sum().reset_index()
world_pop

Aggregation With Attributes
Sum Population by Continent (Attribute Only)

Spatial Aggregation with Geometry
world_agg	=	world[['continent','pop','geometry']]	\
				.dissolve(by='continent',	aggfunc='sum')	\
				.reset_index()
world_agg.plot(column='pop',	legend=True)
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coffee_data.head()

world_coffee	=	pd.merge(
				world,	coffee_data,
				on='name_long',	how='left'
)
world_coffee[['name_long',	'coffee_production_2016']]

Joining Attributes Between Datasets
Attribute Join

coffee_inner	=	pd.merge(
				world,	coffee_data,
				on='name_long',	how='inner'
)
coffee_inner

Join Variation — Inner Join



Attribute Operations 4
Creating & Transforming Attributes
Population Density
world2	=	world.copy()
world2['pop_density']	=	world2['pop']	/	world2['area_km2']
world2[['name_long','pop_density']]
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world2	=	world2.drop('geometry',	axis=1)
world2	=	pd.DataFrame(world2)
world2.head()

Drop Geometry for Pure Attribute Table



Attribute Operations 5

plt.close('all')
rasterio.plot.show(elev)

elev	=	src_elev.read(1)
elev

Read Raster as NumPy Array
Read Raster as NumPy Array

Raster Summaries
np.mean(elev)

elev_float	=	elev.astype('float64')
elev_float[0,2]	=	np.nan
np.nanmean(elev_float)

Raster Categorical Frequency
plt.close('all')
rasterio.plot.show(grain)

grain	=	src_grain.read(1)
freq	=	np.unique(grain,	return_counts=True)
plt.bar(*freq)
plt.show()
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